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A method is given for calculating the characteristics of a bed of product falling 
upon the particles in the fluidized bed from the spraying of the liquid product 
into the bed. 

Some processes in chemical and food technology require the injection of a liquid product 
into a fluidized bed. These include, for example, the drying of liquid products on inert bod- 
ies and granulation in fluidized beds [i, 2]. We consider the case where the input is by 
spraying into the bed. The input is local in the sense that the product can strike the part- 
icles only in the injection zone around the air jet produced by the pneumatic injector. In 
order to calculate such processes, one has to analyze the distribution of the characteristics 
in the layer of product deposited on a particle in a single passage through the injection zone. 
The deposition of droplets on a particle is of random character, and a random number of drop- 
lets of polydisperse composition may fall at a certain point on the particle. Therefore, the 
thickness of the liquid layer is determined not only by the dispersion in the spray and by the 
flow of the droplets over the particle but also by the possibility that droplets fuse. 

When the droplet stream encounters the particles within the jet, the droplets are cap- 
tured by the particles, and the density of the droplet flow decreases as the jet penetrates 
into the layer. This absorption of the droplets in a fluidized bed has been considered in 
[3, 4] on the basis of absorbing-particle concepts, and in [5] it was discussed by means of 
a balance equation for the number of particles in an elementary layer of the bed. The latter 
equation for one-dimensional motion can be put in the form 

dnd := _ _  (i) 
dx qpnpnd 

on t h e  b a s i s  t h a t  t h e  s p e e d s  o f  t h e  p a r t i c l e s  i n  t h e  i n j e c t i o n  zone  a r e  much l e s s  t h a n  t h e  
d r o p l e t  s p e e d s .  We t a k e  n as  c o n s t a n t ,  and t h e n  we can  show t h a t  t h e  number  o f  d r o p l e t s  P 
striking a particle with coordinate x in unit time is 

~d (x) : q_~op, exp ( - -  npgpX). (2) 
m d 

I f  we assume t h a t  t h e  i n d i v i d u a l  d r o p l e t s  s t r i k e  t h e  p a r t i c l e  i n s t a n t a n e o u s l y ,  and a l s o  
t h a t  t h e  i n d i v i d u a l  d r o p l e t s  a r e  fo rmed  i n d e p e n d e n t l y ,  w e  h a v e  a p o i n t  f l u x  o f  e v e n t s  c o n s i s t -  
i n g  of droplets falling on particles, which is a Poisson flux [6] and has intensity ~d. 

We now consider the change in thickness z of the layer of product at an arbitrary point 
on a particle with coordinate x. Here z is the current thickness of the product at time T . 
Interest attaches to the thickness of the newly deposited layer, so z -- 0 at T -- 0, which 
corresponds to the particle entering the injection zone. The layer thickness may alter step- 
wise by random quantity Az at random instants corresponding to droplets striking the particle. 
As the sizes of the droplets are independent of one another and the flow is of Poisson type, 
the random thickness change over time is a discontinuous mark process and is described by the 
Kolmogorov--Feller equation [6] 

oo 

at~ . . . . .  ~df + ~d~ b!z - -  z') f (z') dz'. (3) 
0 
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We note that when a drop strikes a particle, it does not necessarily coat the point on the 

surface, so there is a finite probability that Az = O. Therefore, the b(Az) distribution has 
a 6 singularity at zero [6]. In deriving (3) it has been assumed that the thickness is not 
reduced by the drying, since the passage of a particle through the injection zone lasts only 

a fraction of a second. 

We assume that the droplets are small and that there is a relationship of the form fd = 
cAz~ between the area that they cover and the thickness Az d of a spread droplet; this follows 
from the fact that the spreading droplets are geometrically-similar one to another. Therefore, 
the thickness of a spread droplet is uniquely related to the diameter, and Az d can be taken 
as the characteristic size of the droplets. 

In general, not all points on the surface are equally accessible. For a spherical parti- 
cle in which the radius of the sphere forms an angle 8 with the direction of the relative mo- 
tion of the droplets, the probability of coating by some droplet striking the particle is 

(4) Pc = c (o), 
% 

where 

cos0 for 0 ~ 0 ~ !  
2 ' 

c (0) = 
0 for 

(5) 

When a droplet strikes a particle, there may be two outcomes: the droplet covers the 
point and the layer thickness is increased by Az = AZd, or else the droplet does not cover 
the point, and the layer is unaltered, i.e., Az = 0. If the thickness of the spread drop is 

AZd, then the probability density is 

by (AzIA~) = pc 6 (Az--  Az~ + (1 - -  pc ~ 6 (Az). (6)  

Then the following is the probability density for the layer thickness increasing by Az 
when one drop strikes a particle on the basis of the density distribution for the spread drop- 

let thicknesses: 

b (Az) : S by (AzlAzd~ gd (Az~ d (A~). (7) 
o 

We substitute (2) and (7) into (3) and perform a Fourier transformation to get 

OZ = qm exp ( - -npe#)  c (0) i[~" (s) - -  ~" (O)l X (8) 

oz p~ '"  (0) 

Then (8) d e s c r i b e s  t h e  random growth o f  t h e  p r o d u c t  l a y e r  a t  a p o i n t  on t h e  s u r f a c e  w i t h  
angular coordinate 9 for a particle with coordinate X. To solve this equation we require 
data on the motion of the bed particles in the injection zone. We consider some limiting 

cases. 

We assume that the particles in the injection zone move uniformly parallel to the direc- 

tion of droplet motion or perpendicular to it. In the first case, the coordinates of a parti- 
cle in the injection zone vary linearly, while in the second they are random for a set of 
particles but constant for a single occurrence of a particle in the injection zone. Then let 

�9 X--I 
the x coordinate have a uniform distribution with probability denslty f = ~-. We assume X mu 

as regards particle rotation that either the rotation is rapid or is absent. ,In the latter 
case we have in mind that the angle 8 is a random quantity for the set of particles. As all 
points on the surface are equivalent, it can be shown that 8 has the distribution f8 = 1/2 

sin 0. 

We combine these cases to get four forms of motion in the injection zone. We average 
the solution to (8) on the basis of the distributions for x and @ to derive expressions for 
the characteristic thickness of the product layer at a point on the surface deposited in a 
single transit through the injection zone. We use the relationship between the derivatives 
of the characteristic function and the statistical moments of the random quantity [6] to de- 
rive relationships for the mathematical expectation of the thickness z and the second moment 

about the origin (mean square): 
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~= qm xi~ 
' (9) 4Opnyi~ 

~d (i0) 

The values of the coefficient n are dependent on the particle motion in the injection 
zone and are given in Table i. We considered the above forms of particle motion for constant 
time spent in the injection zone and also the first case for an exponential distribution of 
the time spent in that zone. 

We note that there is a finite probability that no drop will strike the working point on 
the surface. Therefore, the probability density f(z) takes the form 

f (z) : (1 - -  at) 6 ( z ) +  all* (z). ( i i )  

We perform a Fourier transformation on (ii) and use the fact that f*(z) is the probabil- 
ity density for a continuous random quantity to get that 

a t = 1 -- l ira % (s). (12) 

This formula gives us expressions for the A2 dependence of the probability a~, which is 
a geometrical probability and is thus simultaneously equal to the mean fraction of the parti- 
cle surface covered by the product in the injection zone (Table i). 

As there is a finite probability that no drop reaches a point on the surface, the aver- 
aging in (9) and (I0) includes the case z = 0. The characteristics of the layer of product 
can be obtained subject to the conditions z # 0 by using the probability density f*(z). Then 
we get the following expressions for the mathematical expectation for the layer thickness and 
the coefficient of variation of this: 

Vz* ~- 

~ , _  =3.d8~ , ( 1 3 )  

e2dat(A~) 

i 

( ~ (| -~- nA1)o~dA2 -- 1 )T. 
(14) 

It can be shown that (9) 
thickness: 

implies a formula for the mathematical expectation of the layer 

F=OlpFp. (15) 

These formulas show that the probability of several droplets reaching a single point is 
dependent on the ratio of the average liquid layer thickness to some characteristic thickness 
of the layer formed by the spread of a single drop. This ratio is expressed from the dimen- 
sionless quantities AI and A2, which may be called discrete deposition factors. In accordance 
with (15), the mean thickness is equal to the ratio of the output from the sprayer to the sur- 
face of the particles passing through the injection zone in unit time. The characteristic 
drop thickness of appearing in At and A2 are the mean-mass value ~,d/~3 d and the mean volume- 
surface one ~3d/~2 d. 

We performed calculations on the dependence of the probability al on the fantor A2 (Fig. 
i), and also on the ratio of the mathematical expectation of the layer thickness to the char- 
acteristic droplet thickness (Fig. 2) as a function of the same, together with the coefficient 
of variation for the layer thickness for monodisperse droplets (Fig. 3). The integrals in the 
formulas given in Table 1 were calculated numerically. 

The relationships show that when A2 is small there is usually not more than one droplet 
reaching a point on the surface in a single passage of a particle through the injection zone. 
At the same time, the average proportion of the particle surface coated by the product ~s 
small. Also, a: increases with A2, and there are also increases in the mean thickness and the 
coefficient of variation for the thickness, which is due to the increase in the probability 
that several droplets will reach a given point. Therefore, the thickness distribution is 
substantially polydisperse even if the initial droplets are mon0disperse. An important point 
is that relatively complete coating can be attained along with an increase in layer thickness 
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TABLE 1 .  

Particle displa- 
== cement relative 

~ to droplet mo- 
tion dzreetion 

4 

ParaUel 

Perpendicular 

ParaUel 

Perpendicular 

ParaUel 

Forms of Particle Motion in the Injection Zone 

Particle 
rotation 

Rotates 

Rotates 

Does n o t  ro- 
tate 

Does not ro- 
tate 

Residence 
t ime 

Constant 

Constant 

Constant 

i Commnt 

Random Rotates 

n a l  

1 1 - -  exp (-- A2) 
1 

B l _ b f  exp[_A2Bexp(_B~)]d ~ 

B I 4A~ -- I -/- exp (-- 4A2) 

tB 1 t l__exp(_4A2Bexp(_B~)) 

0 o r ~ / f  

o o,,~ o,8 

I 

I 

~cc2 d 
=3;d 

3 

4 

o o~ o,8 ,Qe 

Fig. 1 Fig. 2 

Fig. i. Dependence on the deposition discreteness factor Au for the probability a, 
of at least one droplet reaching a point on the surface of a particle for various 
forms of particle motion (1-5 see Table i). 

Fig. 2. Dependence of z*~2d/~3d, the ratio of the mathematical expectation for the 
deposited layer thickness to the characteristic drop thickness, on the discreteness 
factor A2 for various forms of particle motion (1-5 see Table i). 

Fig. 3. Dependence of the coefficient of variation for the thick- 
ness Vz, on the discreteness factor A2 for various forms of parti- 
cle motion (1-5 see Table i) for monodispersed droplets. 

at the same time as the polydispersion increases. As the drying in this polydisperse layer 
is uneven, droplets may strike the still wet surface on subsequent entry of the particle into 
the injection zone. On the other hand, when ax is small the time between two successive 
depositions on a given part of the surface will show considerable fluctuations even if there 
is fairly regular particle entry into the injection zone [7]. It is therefore important to 
consider the repeated passage through the injection zone in the organization of liquid input 
to fluidized beds. 

903 



NOTATION 

n d, np, numbers of drops and particles per unit volume; x, distance to the initial ir- 
rigation surface; op, mean area of projection on a plane; %d' number of drops falling on a 
~article per unit tlme; qm, mass flow density of drops on the initial irrigation surface; 
m d, mean mass of a drop; z, bed thickness; Az, increment in bed thickness; AZd, thickness of 
a spreading drop; f(z), b(Az), g-(Azd) , probabilitydensitiesof z, Az, AZd; ~, time; fd' area 
covered by spreading drop; c, coefficient; Pc' probability of covering a given point on the 
surface by a drop falling on a particle; e, angular coordinate; 6( ), delta function; 
z(s), characteristic functions of z and AZd; 0, product density; X=n , input zone depth; ~ir' 
irrigation time; ~, ~2(z), mathematical expectation and second origln moment of z; ~sd, ~d, 
second, third, and fourth origin moments of AZd; At, A2, deposition discreteness factors; 
~I, probability of covering a point by a single drop; f*(z), probability density of z for 
z # 0; B, dimensionless injection zone depth; E*, Vz, , mathematical expectation and coef- 
ficient of variation for z for z # 0, G, sprayer efficiency; Fp, area of particles passing 
through the zone per unit time. 
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